
Rigel: Transforming Tabular Data by Declarative Mapping

Ran Chen, Di Weng, Yanwei Huang, Xinhuan Shu, Jiayi Zhou, Guodao Sun, Yingcai Wu

Fig. 1. Rigel Overview. Rigel allows users to construct mappings by dragging or typing values from input data into a spreadsheet. Rigel
recommends possible mappings from data to row, column, and cell channels to declaratively compose user-desired tables.

Abstract— We present Rigel, an interactive system for rapid transformation of tabular data. Rigel implements a new declarative
mapping approach that formulates the data transformation procedure as direct mappings from data to the row, column, and cell
channels of the target table. To construct such mappings, Rigel allows users to directly drag data attributes from input data to
these three channels and indirectly drag or type data values in a spreadsheet, and possible mappings that do not contradict these
interactions are recommended to achieve efficient and straightforward data transformation. The recommended mappings are generated
by enumerating and composing data variables based on the row, column, and cell channels, thereby revealing the possibility of
alternative tabular forms and facilitating open-ended exploration in many data transformation scenarios, such as designing tables for
presentation. In contrast to existing systems that transform data by composing operations (like transposing and pivoting), Rigel requires
less prior knowledge on these operations, and constructing tables from the channels is more efficient and results in less ambiguity than
generating operation sequences as done by the traditional by-example approaches. User study results demonstrated that Rigel is
significantly less demanding in terms of time and interactions and suits more scenarios compared to the state-of-the-art by-example
approach. A gallery of diverse transformation cases is also presented to show the potential of Rigel’s expressiveness.

Index Terms—Data transformation, self-service data transformation, programming by example, declarative specification

1 INTRODUCTION

Transforming raw data into consumable forms is a critical step in data
analysis and decision making [39, 40, 49]. However, the data transfor-
mation process is difficult, tedious, and time-consuming, occupying up
to 80% of the time and efforts in data analysis [19, 38].

Traditionally, data transformation is performed by editing data record
by record, which is apparently not scalable to large datasets. Advanced
users resort to writing custom scripts to transform data in batches,
preferably leveraging additional data processing libraries [1, 2, 4, 6].
However, learning to write such scripts is challenging due to the time
and efforts devoted. In addition, these scripts are mostly tailored for
specific datasets and cannot be easily generalized.

Many interactive systems have emerged from recent studies [36,
38, 57] to make data transformation more accessible and efficient to
a broader audience. These systems provide various data operations
(e.g., aggregating, filtering, and splitting) and recommend appropriate
operations for subsequent transformation [25, 38, 65]. However, most
recommendations are stepwise and not suitable for complex transfor-

• R. Chen, Y. Huang, J. Zhou, Y. Wu are with the State Key Lab of CAD&CG,
Zhejiang University, Hangzhou, China. Y. Wu is also with the
Alibaba-Zhejiang University Joint Research Institute of Frontier
Technologies, Hangzhou, China. E-mail: {chenran928, huangyw, jiayizhou,
ycwu}@zju.edu.cn.

• D. Weng is with the Microsoft Research Asia, Beijing, China. E-mail:
diweng@microsoft.com. D. Weng is the corresponding author.

• X. Shu is with the Hong Kong University of Science and Technology, Hong
Kong, China. Email: xinhuan.shu@gmail.com.

• G. Sun is with the Zhejiang University of Technology, Hangzhou, China.
Email: guodao@zjut.edu.cn.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

mation tasks, which tend to involve lengthy and multiple operations.
To address this issue, some systems such as Foofah [36], follow a
by-example approach, which synthesizes multi-step operations and
recommend transform procedures based on the input example. For in-
stance, a user can change “John Smith” to “Smith, John” in a table cell,
obtaining an operation sequence that swaps the first and second strings
and adds a comma in between. Although such an approach improves
the quality of recommendations, two limitations are observed:
Disambiguating examples. Users are required to provide high-quality
examples without ambiguities [24, 43, 68]; otherwise, user intents may
be misinterpreted, resulting in incorrect or overfitting suggestions and
excessive computational overhead. For instance, the above example can
also be interpreted as swapping the first four and the last five characters
and then adding a comma in between, which overfits the user intent.
Exploring diverse results. This approach assumes that users have
a clear transformation goal in mind. However, in certain scenarios
such a goal may not exist [39, 46] and the by-example approach falls
short in assisting users in exploring different transformation results
to figure out their goals. For instance, data analysts are usually faced
with ambiguous requirements such as “what can the dataset be used
for?” and “how can the dataset be presented in a readable manner?”
They should explore a large number of table forms for insights and find
suitable forms for reporting.

In this paper, we introduce Rigel, a general data transformation
system that incorporates a new declarative mapping approach, assisting
users in addressing the aforementioned limitations. Inspired by the idea
that a table is inherently a visual arrangement of data [58, 67], Rigel
divides a table into the row, column, and cell channels and implements a
novel declarative mapping approach that formulates the transformation
procedure as the direct mappings from data to these channels. For
instance, Fig. 1 demonstrates a transformation that maps the State, Year,
and GDP attributes of the input data into the row, column, and cell
channels of the target table, respectively. Hence, each row in the target
table will represent a state, each column will represent a year, and each

cell will comprise the GDP for the corresponding state and year. Rigel
can transform the input data and compose the desired target table based
on such mappings without ambiguities.

Rigel employs an interaction-driven approach, allowing users to
directly drag data attributes from input data to the row, column, and cell
channels and indirectly drag or type data values in a spreadsheet, and
possible mappings are recommended. An example of this approach is
illustrated in Fig. 1. In this example, Jonathan drags “Alabama“ from
the input data into the first cell of the second row in the target table
(leaving the first row empty for the column header), indicating that he
wants to lay the state names down vertically in the first column as the
row header. Then, he types “200” in the second cell of the first row,
and Rigel matches the value he typed with the input data and suggests
that year “2004” can be filled in this cell. Based on Jonathan’s inter-
actions, Rigel can infer and make a transformation recommendation
that State and Year can be mapped into the row and column channels,
respectively, and GDP will be a reasonable choice for the cell channel.
After Jonathan accepts the recommendation, the rest of the target table
will be filled automatically and the data transformation is completed.
Combining the declarative mapping approach, the interactions, and the
recommendations in Rigel, users can feed tables of their interests, intu-
itively compose the table attributes and values no matter whether their
target tables are completely figured out, and explore possible tables to
determine the final one to store in the database, analyze in Excel or
Tableau, present in reports or visualizations, etc.

We evaluate Rigel with two approaches following the suggestions by
Ren et al. [51]. We first assess Rigel’s expressiveness with a gallery of
diverse transformation cases that highlight Rigel’s substantial coverage
of transformation tasks [40]. Second, we evaluate Rigel’s usability with
a quantitative user study, where Rigel is compared against Foofah [35,
36], a by-example data transformation system, across a set of data
transformation tasks. By analyzing task performance and qualitative
feedback, we find that Rigel is significantly less demanding in terms of
time, interactions, and suits more scenarios.

The contributions of this study are summarized as follows:
• We propose a novel declarative mapping approach that formulates

the data transformation procedures as mappings from data into
the row, column, and cell channels of the target table;

• We develop Rigel, an expressive and user-friendly data transfor-
mation system that addresses the disambiguation and exploration
issues based on the declarative mapping approach.

2 RELATED WORK

2.1 Foundations of Data Transformation
Many theories, models, and frameworks have been proposed to charac-
terize data transformation. Early data transformation emerges from the
longstanding popularity of data query and management on relational
data (e.g., SQL and its extensions [10, 41]) in the database commu-
nity [21, 50]. Consequently, the transformation procedures are often
modeled as a sequence of data operations borrowed from the database
community. A data operation can be seen as a declarative verb (e.g.,
splitting a column and filtering rows) describing how to transform the
input tables into the desired tables step by step.

With the growing variety of data transformation tasks, additional
data operations have been continuously developed. For instance, Wran-
gler introduces new operations for diverse transformation tasks, such
as aggregation, complex reshaping, and conditional mapping [38].
In addition, spreadsheet tools incorporate operations to manipulate
strings [22, 54] or the layout [11, 26] of table cells. Moreover, re-
searchers also develop operations that transform the given tables into
other data models (e.g., networks [15,32,47]). However, the added data
operations also increase the complexity of data transformation.

To address the issue, researchers advocate a compact design of
data operations, i.e., completing a wide variety of transformation tasks
with a limited number of well-designed operations, most of which
accept identical parameters [25, 39]. Kasica et al. [40] characterize
the operations with two dimensions, namely, three types of data object
(row, column, and table) and five categories of operation (create, delete,
transform, separate, and combine). As such, most operations could be

identified by the combination of a data type and an operation category.
For instance, the operation dividing a table into multiple subsets is
depicted as separating a table. Such a framework presents a clear
organization of diverse operations and their parameters, potentially
smoothing the learning curve for these operations. Furthermore, it can
also improve the efficiency of transformation recommendation models
by outlining a boundary for the search space [25].

Although efforts have been devoted to compact data operations, the
transformation procedures that comprise operation sequences may still
get lengthy, and constructing them become laborious for users as the
transformation tasks grow complex [22, 36]. Therefore, we employ a
declarative mapping approach and formulate the data transformation
procedure as direct mappings from data to the row, column, and cell
channels of the target table. These mappings declaratively describe
what the transformed data will look like in a “squeezed” and bounded
structure, which are more systematic, straightforward, and interpretable
compared to procedural operation sequences.

2.2 Transformation Systems for Tabular Data

The transformation systems tailored for tabular data have been devel-
oped in both industry (e.g., Tableau Prep Builder [5], Trifacta [7], and
OpenRefine [3]) and academia (e.g., Flashfill [22], Foofah [36], and
Falx [57]). The most common approach that these systems employ to
assist users in data transformation is to present data operations in a
menu, where users can select and apply the operations to data. Some
systems further enable users to preform specific data operations with
interactive data visualizations [37, 44, 62, 63]. For instance, brushing
in the bar chart filters data records out of the scope in Trifacta. Nev-
ertheless, a large set of complex data operations, such as folding and
unfolding, are difficult to perform with interactions. To support diverse
data operations, the existing systems either allow users to write custom
scripts or configure the parameters for built-in operations with widgets.
Despite the expressiveness, writing scripts or configuring operations
usually bring steep learning curves and are time-consuming. To bal-
ance the expressiveness and usability, modern transformation systems
employ recommendation models to suggest appropriate operations.
These models can be divided into two categories: single- and multi-step
recommendations [66].

Single-step recommendation. Some data transformation systems
like Trifacta [7] and its predecessor Wrangler [25, 38] provide single-
step suggestions of data operations by user interactions or proactively.
Specifically, users can highlight the data features of interest, and these
highlighted features will guide the recommendation of data operations.
This is called predictive interaction [31]. For instance, the system
would recommend deleting the empty row or deleting all empty rows
in the table if the user clicks on an empty row. Additionally, some sys-
tems also proactively analyze data features to recommend single-step
operations prior to users’ interactions [25, 65]. Although such single-
step recommendations can accelerate data transformation, the iterative
recommend-and-select processes may get lengthy and laborious for
users in difficult tasks [36]. In addition, users are required to understand
the recommended data operations, which introduce extra cognitive load
and usability issues, especially for non-expert users [11, 36, 38, 42].

Multi-step recommendation. Motivated by the limitations, some
other systems follow the by-example paradigm [45] and recommend
the sequences of data operations based on the examples provided by
the users. For instance, given (“John Smith”→ “Smith, John”) as an
example, a multi-step recommendation system would suggest a se-
quence of two operations, where the first and last names are exchanged
first, and then a comma is added in between. The by-example rec-
ommendation of the operation sequence is straightforward, allowing
users to focus on their desired output while decoupling tedious ex-
ecution details from the process. Therefore, it is widely applied to
various transformation systems with multiple rounds of iterations and
improvements [8, 9, 11, 20, 22, 26, 28, 36, 50, 54–57]. However, two
limitations are observed in these systems. First, the key to a successful
transformation relies on users to provide high-quality examples without
ambiguities [24, 43, 68]; otherwise, the recommendation engine cannot
precisely capture user intents and may provide incorrect suggestions

with extra computational overhead. To address this issue, some systems
move beyond the by-example approach and explore new possibilities.
Auto-Type [64] and Auto-Transform [29] systems proactively analyze
data features to offer multi-step suggestions without examples. Auto-
Pipeline offers recommendation based on the existing transformation
pipelines rather than user-provided examples [66]. Nevertheless, these
systems still have trouble in understanding user intents due to the lack
of sufficient user input. Second, in certain scenarios, such as finding
suitable table forms for presentations, users do not have clear transfor-
mation goals [39, 46]. The existing systems fall short in assisting users
in exploring different transformation results and figuring out user goals.

To conclude, there lacks a transformation system of tabular data
that can sufficiently understand user intents in data transformation and
facilitate the exploration of diverse transformations when the goals
are unclear. Therefore, we propose Rigel to address the limitations
observed in the current approaches, employing a novel declarative map-
ping approach to effectively characterize user intents and recommend
diverse target tables based on partial examples.

3 DECLARATIVE MAPPING FOR TRANSFORMATION

To keep the benefits and address the limitations of the transforming
by example approaches, we follow the insights of these approaches
where users tend to directly specify what the transformed results look
like [22, 23], but develop a new approach to formulate user intents
into unambiguous table examples. Specifically, a table is inherently a
visual arrangement of interrelated data in a row-column form [58, 67].
Based on this idea, we divide a table into three channels including row,
column, and cell and model the data transformation procedure as the
specification of the transformed target table using the mappings from
input data to describe what each row, column, or cell represents:

table := (row),(column)→ (cell), (1)
row | column | cell := var (2)

Such mappings act like a bridge between user intents and target
tables: these mappings can be formulated from explicit or implicit user
interactions, and subsequently the target tables can be unambiguously
composed from these mappings. To design a solid mapping-based
approach, we drew inspiration from the visual mapping in the visual-
ization community that maps data variables to graphical elements (e.g.,
circle and bar) for visualizations [14, 48] and its successful applica-
tions [17, 52]. Researchers also investigate the partial specification of
visual mappings for open-ended exploration [60, 61], which inspires us
to extend our approach to help users figure out their goals.

To obtain and apply such mappings, we first need to build data
variables and their relations from the input data (Fig. 2 (A) and (B)),
and then transform the input data into the target table based on the
specified mappings (Fig. 2 (C)).

3.1 Building Data Variables and Relations
The declarative mapping approach needs to build a set of data variables
and their relations from the input data for users to compose their desired
tables. In this study, we use relational tables, which are widely used in
many database management systems, as the input data. Other types of
input data may also be supported with tailored extraction methods, but
we will leave this as future work as it is beyond the scope of this study.

Each column of a relational table can be regarded as a data variable.
The possible values for a data variable can be obtained by enumerating
unique values in the corresponding column. The values of the data
variables in the same row are linked together to construct the relations
among the data variables. For instance, as shown in Fig. 2 (A), six
data variables are extracted from two relational tables. The “2004” of
the Year data variable is linked to the “Alabama” and “Alaska” of the
State data variable, and these two states are subsequently linked to the
“2169.6” and “2002.3” of the GDP data variable.

A set of functions can be used in the mappings to obtain new data
variables from the existing ones as follows:

var := f (var) (3)

Inspired by the taxonomy of data wrangling operations proposed by
Kasica et al. [40], we categorize these functions into three categories:

• Transform (1:1). The transform functions can construct a new
variable from an existing one. Some of these functions construct
new variables to transform each row in a column into different
formats, thereby keeping the same numbers of values as the origi-
nal one. Others are to separate or combine the rows in a column,
thus increasing or decreasing the number of values. For example,
the unnest function converts the arrays or sets in a row into multi-
ple rows. By contrast, aggregating functions (e.g., bin and sum)
summarize multiple values of rows into one. A special case is
filtering, which removes rows instead of separating or combining.

• Separate (1:N). The separate functions can create several vari-
ables from the original one. A typical separate function is splitting,
which splits a string variable by a given separator into a list of
variables. The desired variable in this list can be selected with a
subscript enclosed in the brackets. For example, Split(Name,
‘ ’)[0] maps the first names from the Name variable. These
functions are mainly for separating columns.

• Combine (N:1). The combine functions can produce a variable
from multiple variables. One use case is to combine multiple
columns, such as concatenating the city, street, and building
number into a new string describing the address. Another case
is to combine multiple tables, such as calculating the union or
intersection of the related variables in different tables to associate
these tables for subsequent mappings.

We design these functions by borrowing several principles from
the declarative programming paradigm, including immutability (data
variables can only be derived but not mutated), purity (calling these
functions does not have side effects and always leads to the same result
if the same parameters are supplied), and composability (functions can
be composed to achieve complex mappings). As such, these functions
can be used in the table mappings defined by Equation 1 to declaratively
describe the complex transformations from the input relational tables
to the target tables. The substantial difference between these functions
and traditional data transformation operations is that these functions
are to derive new variables instead of transforming tables. In particular,
they only process one-dimensional variables comprising a set of data
values instead of two-dimensional row-column data tables. Moreover,
we exclude the create (0:1) and delete (1:0) categories proposed by
Kasica et al. [40] from the declarative mapping approach because the
functions in these categories violate the purpose of the functions to
derive new variables, namely, both the input and output cannot be
zero. Nevertheless, similar functionalities are implemented in the user
interface, where users can add new variables by loading new datasets
and delete variables via interactions.

Fig. 2 (B) shows an example of applying these functions to data
variables to derive new ones for further transformation. In this example,
Split is applied to the State Abbr variable to extract the abbreviations
of the states from this variable. Union merges two identical Year
variables and their relations, equivalent to performing the join operation
for two input relational tables on the Year column. Format transforms
the GDP variable into a more readable format. We will show how
to compose these variables into a table mapping that describes the
transformation process in the next section.

3.2 Transforming Data with Declarative Mappings
The data variables can be mapped into table channels to produce the de-
sired table. For example, the target table in Fig. 2 (C) can be formulated
with the following mapping:

(Split(State Abbr, ...)[1]),(Union(Year,Year))→ (Format(GDP, ...)),

where each row represents the abbreviation of a state, each year repre-
sents a year, and each cell will comprise the GDP formatted in thou-
sands for the corresponding state and year.

To execute transformation based on such mappings, the proposed
approach enumerates the values of the variables mapped to the row and
column channels and fills these values from the starting cells of rows
and columns. Next, the approach searches the values of the variables

Fig. 2. Rigel’s declarative mapping approach for transforming tabular data. (A) The approach extracts data variables and their relations by scanning
the input data. (B) Users can map data variables to row, column, and cell channels with data operations to compose their desired tables. (C)
Relations between variables search and place data values into corresponding cells to produce the target tables.

mapped to the cell channel and places them into the corresponding cells
based on the relations of these variables to the variables mapped to the
row and column channels.

If multiple variables need to be mapped into the same table channel,
these variables can be composed based on the following rules:

var := var× var (4)
var := var+ var (5)

Equation 4 is applied in the row and column channels to generate
the Cartesian products of multiple variables in these channels and
enumerate tuples in rows and columns. For instance, the relational
table in Fig. 2 (A1) can be specified as (Year× State),()→ (GDP),
where both Year and State are mapped to the row channel such that each
row is associated with a state and a year, and GDP is mapped to the cell
channel to describe the GDP of a state in a year. In addition, Equation 5
is applied in the cell channel to concatenate different data variables
to present multi-dimensional data. For instance, (Year×State),()→
(GDP+Crime) can append Crime as a new column to the relational
table in Fig. 2 (A1), such that the GDP and crime rate of a state in a
year are shown in the same row.

Based on the above definition, the following two conditions can be
used to check the validity of a table specification:

1. Either the row or column is not empty;
2. Equation 5 can not be applied in cross-tabulations where both the

row and column are not empty.
Combining functions and mappings of data variables, the approach

could cover most of multi-table data wrangling operations (20/21) based
on a state-of-the-art taxonomy [40], and we present the details in the ex-
ample gallery at https://observablehq.com/@rigel/appendix.

4 RIGEL

This section presents the design considerations and elaborates the sys-
tem design of Rigel.

4.1 Design Considerations
The design of Rigel should meet the user requirements of various
transformation tasks with high usability in both target-oriented transfor-
mation and open-ended exploration. To this end, we further instantiate a
graphical user interface based on the proposed declarative mapping ap-
proach. The design of Rigel is guided by the following considerations,
which are based on existing theories of interactive interfaces [16,33,34],
spreadsheets [12], exploratory search [30, 59–61], and refined during
multiple rounds of design iterations.
DC1. Support flexible construction of mappings. Can the novice
users effortlessly create mappings to express their intents? Can the

experienced users rapidly and accurately transform data by mapping?
The expertise of users who need to transform data varies from using
generic tools to writing custom scripts. Rigel should empower diverse
users to perform transformation tasks with different ways according to
their levels of expertise, trading off between usability and flexibility.

DC2. Fix ambiguities and conflicts in constructing mappings. Can
Rigel detect ambiguous interactions which could be interpreted in multi-
ple ways, as well as conflict examples which may fail in transformation?
Can Rigel help users resolve these issues? Users may face challenges
due to flexible and diverse interactions. To construct mappings, Rigel
should detect ambiguities and conflicts from user interactions and assist
them in expressing and refining their intents accurately.

DC3. Recommend for complete and incomplete mappings. Can
Rigel assist users in the exploration of transformations if the users
do not have clear goals? Will Rigel help users discover better target
tables than what the users have in their mind? Rigel should employ a
mixed-initiative approach to help users find target tables that complete
ambiguous tasks or complete tasks better. Such an approach should
support inferring potential transformations when no input is given and
also accepting partial mappings as constraints for recommendation.

DC4. Balance diversity and exhaustiveness of recommendations.
Can Rigel recommend diverse target tables? Are similar tables pruned
to avoid overwhelming users? Does the recommendation satisfy users’
need? There are numerous ways to transform the input data. In particu-
lar, many transformations will result in similar tables. Due to limited
screen space, Rigel should avoid exhaustively enumerating similar ta-
bles which may overwhelm users, but offer diverse recommendations
that facilitate the exploration of the target table space.

DC5. Facilitate understanding and selecting of recommendations.
Can Rigel help users read many recommendations? How does Rigel
facilitate informed selection among them? Despite the balance between
diversity and exhaustiveness (DC4), various recommendations may still
be generated to facilitate the open-ended exploration of transformations.
To help users understand these recommendations and choose one of
them judiciously, Rigel should aggregate recommendations into distinct
categories, present recommendations in readable formats, and preview
the recommended tables to facilitate exploration.

4.2 The Rigel System
The Rigel system consists of three views, i.e., a raw-table view to
present the raw data tables, a target-table view to compose the resulting
table, and a suggestion view to recommend possible transformations
with previews, as shown in Fig. 3. Based on the declarative mapping
approach as described in Sect. 3, users’ pipeline in Rigel is divided into
a two-phase iterative workflow as follows:

https://observablehq.com/@rigel/appendix

Fig. 3. Rigel’s user interface. (A) Raw-table view presents (A1) data variables and (A2) their relations of the raw data. (A3) Users can click the
“derive” button and apply data functions to derive new variables. (B) Target-table view allows users to compose target tables by (B1) directly mapping
variables into three table channels or (B2) indirectly assembling examples for mappings in a spreadsheet. (C) Suggestion view recommends (C1)
alternative tables by rearranging the current table and (C2) table variations by adding unused data variables for open-ended exploration, and (C3)
supports hover to preview the effects.

1. Construct table mappings. Rigel allows users to compose tables
by constructing declarative mappings. In particular, users can
directly map variables into table channels or indirectly assemble
table examples for mappings.

2. Explore table variants. With the current table, Rigel generates
related variants for recommendation. Users can preview and
choose the most suitable one, or they can skip and return to the
first phase to provide more hints for transformation.

The two phases are iterated until users have obtained satisfactory
tables. Additional interactions are also integrated in this workflow
to provide some basic functionalities similar to those implemented in
general spreadsheet tools, such as undo/redo and import/export.

4.2.1 Construct Table Mappings
The variables (Fig. 3 (A1)) and their relations (Fig. 3 (A2)) of the
imported data are extracted and depicted in the raw-table view. Users
can map these variables from the raw-table view to the target-table view
to compose target tables for data transformation. Rigel provides two
classes of interactions to construct mapping (DC1): direct mapping and
indirect mapping. Users can further apply functions for mappings and
should resolve ambiguities and conflicts during the process. Each inter-
action produces a partial mapping from a variable to a table channel,
and Rigel merges these partial mappings from multiple interactions to
create a complete mapping and render the resulting table.

The direct mapping enables users to directly drag a variable from
the raw-table view (Fig. 3 (A1)) to one of three table channels in the
target-table view (Fig. 3 (B1)), thereby generating a partial mapping.

The indirect mapping allows users to indirectly construct mappings
by assembling examples in the spreadsheet of the target-table view
(Fig. 3 (B2)) and select recommendations in the suggestion view (Fig. 3
(C)). Users can assemble examples in three ways (DC1). First, users
can drag a data value from a cell in the raw-table view (Fig. 3 (A2))
into a cell in the target view. Second, users can also drag a data variable

(a set of data values) in the raw-table view (Fig. 3 (A1)) into cells in
the target-table view. Dragging the variable into the left border of a cell
means placing the variable values into cells of the same row started by
the cell. Similarly, dragging into the top border of a cell means placing
the values into cells of the same column started by the cell. Third, Rigel
allows users to directly type text into cells in the target-table view with
the assistance of autocomplete.

However, the indirect mapping may suggest multiple possible map-
pings (DC3) and Rigel should detect ambiguities for users to determine
the desired mapping. For instance, as shown in (Fig. 4), dragging the
value “First-level” into a cell of the target table implies mapping the
variable level to the row or column channel. Based on the declarative
mapping approach, the ambiguities of the indirect mapping may origi-
nate from two aspects: the variable and the table channel (DC2). First,
the assembled example could match multiple variables and users have
to determine the variable for mapping. In particular, such ambiguities
are mainly due to typing instead of dragging which implicitly indicates
the variable. Second, Rigel enumerates possible table channels for the
variable based on the distribution of the variable along rows or columns.
Specifically, Rigel recommends the row or column channel if examples
are filled row-wise or column-wise. The cell channel recommendation
follows the two validity conditions of mappings proposed in Sect. 3.2
in addition to the distribution: (1) if either the row or column channel
is not empty, or (2) if both the row and column channels are not empty
and the cell channel is empty. For instance, when the row channel is
non-empty and the column channel is empty, Rigel will recommend
the cell channel if the examples are distributed row-wise but will not
recommend if the examples are column-wise. During the two steps of
disambiguation, all suggestions are presented in natural language based
on predefined templates like Fig. 4 (DC5).

During the direct and indirect mappings, users can apply functions
to derive new variables in both raw- and target-table views (DC1). In

Fig. 4. (A) Users can assemble examples by dragging data into the target
table, and (B) Rigel composes the target table by providing possible
mappings for users to disambiguate the examples.

the raw-table view, users can click the “derive” button of a variable
to transform or separate one variable to one or multiple new variables
(Fig. 3 (A3)). Users can also drag a variable to another one to com-
bine the variables into a new variable based on the selected combine
function (Union/Intersection/Concat). In the target-table view, users
can transform and separate variables by right clicking (Fig. 5 (D)) and
combine variables by dragging one to another in the table channels. In
particular, applying functions to variables in the target-table view is a
shortcut to deriving variables in the raw-table view and then replacing
the original variables using the derived ones in the target table.

The constructed partial mappings are merged into the existing map-
pings in the target-table view (Fig. 3 (B1), and the resulting table in the
spreadsheet is re-rendered (Fig. 3 (B2)). Specifically, variables in the
same table channel of different partial mappings are composed based on
Equation 4 and Equation 5. For instance, (A),()→ (B) and (),()→ (C)
will be merged into (A),()→ (B+C). The merged mapping can be
modified by adding, moving, and deleting variables (DC1). Moreover,
due to the overly flexible interactions of indirect mapping, there may
exist unreasonable layout of the mapping. For instance, there may exist
conflicts that different partial mappings share the same cell. In addition,
mappings may also distribute far away from each other, resulting in
a loose layout. To address the issues (DC2), Rigel enables users to
click the “Optimize Layout” button to replace the current layout with a
standard layout of the mapping.

4.2.2 Exploring Table Variants

Based on the constructed mapping and the resulting table, Rigel rec-
ommends related table variants to inspire users to explore and choose
the most suitable one. Similar as the visualization recommendation
of visual mappings in Voyager [60, 61], Rigel receives all variables
in tables and the current table mapping, which may be incomplete or
complete during user interactions, and outputs two sets of related table
mappings: variations and alternatives (DC3 and 5).

We denote the set of variables in the current mapping as Vp and the
set of all variables of the used tables as V . Vq =V −Vp denotes the set
of unused variables in these tables. For instance, for the variables and
the mapping in Fig. 3 (A1) and (B1), Vp has three variables: level, aver-
age(gdp), and average(population), and Vq has the other four variables
related to the table zhejiang-city: city, year, gdp, and population.

Variations are mappings that add unused but related variables (Vq) to
the current table mapping to enrich the current table. With variations,
extra variables can be added to mappings to iteratively extend small and
simple tables to large and complex tables. When significant variables
are all selected, alternatives are helpful to rearrange the variables in the
current table mapping (Vp) into different channels for different table
forms. Enumerative approaches can exhaustively search all combi-
nations of variations and alternatives. However, the search space is
huge and can produce overwhelming recommendations. In particular,
assuming n and m variables of Vp and Vq, (n+3)m variations can be
recommended by enumerating each of the m variables in n+3 different
positions in the three table channels of the current mapping. In addition,
there exist more than n! alternatives by permuting the n variables in ta-
ble channels. Nevertheless, the enumerative recommendations usually
produce similar tables, most of which cannot inform users of diverse
table forms but cause heavy cognitive load. Therefore, Rigel only rec-

Fig. 5. (A, B) Users can extend the current table with the recommended
table variations. (C, D) Users can also fine-tune the current table by right
clicking variables and applying functions.

ommends typical variations and alternatives (DC4), encouraging users
to manually select the one that is close to their target tables and fine-
tune for the tables by dragging and deriving variables in table channels.
Specifically, Rigel lists one variation for an additional variable in Vq and
maps the variable into the end of the cell channel (Fig. 3 (C2) and (C3).
Besides, Rigel enumerates three typical types of alternatives, namely,
table mappings without row, without column, and cross-tabulation with
row, column, cell, and recommends the three types if they are valid for
the current mapping (Fig. 3 (C1)). All recommendations are presented
in natural language using predefined templates and support hover to
preview the effect (DC5).

5 USAGE SCENARIO

To demonstrate the expressiveness and usability of Rigel, we walk
through a data analyst Jane’s process of exploring the economy and
population of different levels of cities in Zhejiang province, China.
The input dataset comprises 33 rows and 5 variables (city, year, gdp,
population, and level) (Fig. 3 (A2)), where each row describes a city’s
GDP, population, and classification of tier levels by media publications
in a year. The dataset is finally transformed into a cross-tabulation to
reveal the distribution of cities of different tier levels in different GDP
and population ranges, as shown in Fig. 7.

Jane gets this table for the first time and does not have a clear goal
for data analysis. She starts her exploration by first dragging the “First-
level” in the raw table to the target table out of her interest in different
city levels (Fig. 4 (A)). Rigel then derives two possible transformations
in the suggestion view that infer the user intent, i.e., map the variable
level to the row or column channel. After previewing the effects applied
these suggestions respectively via hovering, Jane selects (level),()→ ()
as a trial (Fig. 4 (B)). Rigel updates the recommendation accordingly,
providing alternatives and variants based on the current table. Jane
applies her interested variables gdp and population sequentially (Fig. 5
(A) and (B)). As such, Rigel automatically maps gdp and population
into the cell channel, i.e., each row represents a certain level with two
sets of gdp and population values belonging to this level. Jane then right
clicks gdp and population in the target table to compute the average
of both sets by applying the average operation (Fig. 5 (C) and (D)).
As such, she gets a table (Fig. 3 (B2)) showing the average gdp and
population values in different city levels.

Intrigued by two data patterns in the table: synchronous drop be-
tween the city level and GDP, population, and abnormal rise of popu-
lation from the third- to fourth-level cities, Jane determines to further
check the distribution of cities in different GDP and population ranges.
She clicks the “Derive” button and applies the default bin to gdp and
population. Next, she removes average(gdp), average(population)
from the target table, and drags the binned gdp, population into the
column channel directly. Then, Jane drags city into the cell channel

Fig. 6. (level),(bin(gd p)×bin(population))→ (count(city)) specifies a
cross-tabulation presenting the distribution of different levels of cities in a
series of range combinations of gdp and population.

and applies count. The table (Fig. 6) shows the distribution of different
levels of cities in a series of range combinations of gdp and popula-
tion. Inspecting the table, Jane notices that the first- and second-level
cities are distributed in high and middle GDP and population ranges
respectively, while both third- and fourth-level cities in low ranges,
validating synchronous drop between the city level and GDP, popula-
tion, and indicating the gap between different levels of cities. However,
the abnormal rise of population from the third- to fourth-level cities
still cannot be understood as the third-level cities are distributed in
the lowest and penultimate low population ranges and the fourth-level
cities are all distributed in the lowest range, which also follows the
pattern of synchronous drop. To investigate this anomaly, Jane directly
adds population to the cell channel for details of the distribution and
folds the cross-tabulation to obey Equation 5 for a valid table. The
resulting table (Fig. 7) reveals that a third-level city “Zhoushan” has
extremely low populations, pulling down the overall average.

With Rigel, Jane can rapidly transform the input dataset into different
formats, facilitating data analysis and exploration and gaining insights.

6 USER STUDY

To assess Rigel’s usability, we conducted a task-based user study to
compare Rigel and Foofah [35, 36], a by-example data transformation
system. We hypothesized that Rigel would be efficient and require less
efforts to complete transformation tasks.

6.1 Method
The user study employs a 2 (data transformation system) × 4 (task)
mixed design. Each participant conducted two data transformation
sessions, each with a different data transformation system to perform
the same four data transformation tasks. We randomized the order of
systems and tasks across subjects. The behaviors and subjective feed-
back of subjects were collected and analyzed to verify our hypothesis
and demonstrate Rigel’s usability.
Participants. We recruited 12 participants (6 males and 6 females),
all students (5 PhD, 3 MS, and 4 undergraduate) from different depart-
ments, including Computer Science (6), Electronic Engineering (1),
Media (1), Art (1), Agronomy (1), Psychology (1), and Sport Science
(1). The participants are represented as P1–P12 in this paper. All sub-
jects were with prior data transformation experience (average 3.9 years
and self-reported expertise 3.08 on a 5 point Likert scale). Subjects had
used data transformation tools including Microsoft Excel, MATLAB,
SPSS, GraphPad, Python, R, and none of them had used Rigel, Foofah,
or similar by-example transformation systems before.
Data Transformation Systems. Participants interacted with two data
transformation systems: Rigel and Foofah, one of the state-of-the-art
systems for transforming tabular data by example. Foofah supports
common transformation tasks, such as dropping, splitting, and transpos-
ing, and incorporates a by-example approach such that users provide

Fig. 7. (bin(gd p)× bin(population)× level),()→ (city+ population) re-
shapes the table in Fig. 6 and complements population values, showing
that “Zhoushan” has an extremely low population during three years.

input-output examples for Foofah to synthesize programs to transform
the entire input data. Compared to other by-example transformation
systems targeting programming users, such as AutoPandas [13] and
Wrex [20], Foofah is mainly for average users, providing smooth in-
teractions without needs of inspecting program scripts, which is fairly
appropriate to compare with Rigel.

Tasks and Data. Participants are required to complete four data trans-
formation tasks using both Foofah and Rigel. The design of the four
tasks is informed by common practices of data workers according to
our experience and is based on the expressiveness of Foofah and Rigel.
In particular, Foofah incorporates operators to rearrange and reshape
tables, group rows, manipulate strings, and incorporate missing values,
but lacks operators to combine and separate tables, such as joining
and aggregating. Meanwhile, Rigel is designed to transform tables
and not excel at manipulating strings and interpolating missing values.
Therefore, the four tasks mainly involve grouping and filtering rows,
string manipulation, and table reshaping. To reduce cognitive load,
we use datasets with at most 4 data variables and 20 records. In each
task, subjects should transform a raw data table into a new format, as
described below:

1. Aggregate Observations. Subjects started with data containing
papers and authors in a relational format. They should group data
records by paper names, aggregate paper authors into a cell, and
separate author names with commas.

2. Generate Unique Key. We gave subjects a relational table of
housing crime data by years and states and asked them to generate
a unique key for each row by concatenating year and state.

3. Create Cross-tabulation. With a table comprising people’s phone
and fax numbers at home and work, subjects should remove
incomplete records and create a cross-tabulation of numbers by
people and number types.

4. Transpose Table. Subjects were required to transpose the same
table of housing crime in Task 2 from 20 rows × 3 columns into
3 rows × 20 columns.

Study Protocol. Each data transformation session began with a 10-
minute tutorial to walk through the system using a dataset distinct from
those used in subsequent tasks. Next, the subjects freely explored to
get familiar with the system and could ask us for unclear features for
5 minutes. Afterward, they performed the four data transformation
tasks following the think-aloud protocol (permitting a maximum of
5 minutes per task), and their behaviors and resulting tables were
recorded. During the process, we did not respond to their inquires.
After completing tasks, the subjects were asked to fill in a post-study
questionnaire designed using a 7-point Likert scale based on NASA-
TLX [27]. Finally, we interviewed subjects with several open-ended
questions, e.g., ranking system features, discussing confusion, and
sharing feedback. The entire process lasted approximately 1.5 hours,
and we compensated each subject with a $15 gift coupon.

Fig. 8. Results of four data transformation tasks using Foofah and Rigel by users. In general, Rigel completed (A) more tasks and was significant
less demanding in terms of (B) time and interactions including (C) mouse clicks and (D) keystrokes.

Evaluation Metrics. To quantify the amount of user efforts on both
systems, we measured the time and the number of mouse clicks and
keystrokes of each task. Combining these three metrics helps reduce
negative impacts of other factors, such as using the thinking aloud
protocol in the study. Furthermore, we counted the number of different
ways subjects used to assemble examples and construct mappings in
Rigel to understand user preference to these interactions.

6.2 Quantitative Results
Subjects quickly learned how to transform data in both Foofah and
Rigel. However, they encountered difficulties during tasks. As shown
in Fig. 8 (A), about half of subjects failed in Task 1 and 3 with Foofah,
and a small number of users could not complete Task 2 (15 failures
of 48 attempts in total). These failures mainly originated from overly
simple examples users provided that could not sufficiently convey their
intents, or overly complex examples that are difficult for Foofah to
understand. In contrast to Foofah, there exist fewer failed tasks in
Rigel (3/48). These failures resulted from user’s unfamiliarity with the
by-mapping approach, including the combine function (Equation 3) in
Task 1 and the Cartesian products (Equation 4) in Task 3.

Across the successful tasks, subjects completed the tasks with less
time, mouse clicks, and keystrokes in Rigel than Foofah (Fig. 8 (B–D)).
Specifically, subjects usually started Foofah by providing output exam-
ples with about five to ten cells by selecting, copying, and pasting or
directly typing values. If the first round of examples failed to complete
the tasks, Foofah only presents the wrong transformed results, which
usually confused subjects and helped little to understand mistakes. Sub-
jects tended to randomly feed more examples to Foofah, leading to
laborious trial-and-error attempts (average 2.8, 2.2, 1.8, and 1 round of
examples for the four tasks respectively). Moreover, the synthesizer of
Foofah also took time to search data transformation programs based on
examples. By contrast, Rigel incorporates flexible dragging interactions
and efficient recommendation, significant reducing efforts in assem-
bling examples. All subjects liked dragging and almost abandoned the
interactions of text typing, selecting, copying, and pasting in Foofah.
Only three subjects typed examples into cell once or twice during their
tasks. As such, few keystrokes were recorded in the study. In addition,
subjects preferred the direct mapping of variables in table channels
to the indirect mapping of examples in the spreadsheet. Therefore,
significantly fewer mouse clicks for dragging were required.

6.3 Qualitative Feedback
Subjects’ qualitative rating and comments reinforce the quantitative
results. In particular, all subjects agreed that the by-example and by-
mapping transformation approaches suit different usage scenarios. We
summarize the following insights to discuss their differences from the
aspect of human cognition and perception.

6.3.1 Example and Mapping: Execution v.s Evaluation
Examples and mappings are two types of direct manipulation inter-
faces [34] of data transformation and have different characteristics of
directness for users. All subjects agreed that Foofah’s by-example

approach is straightforward and almost has no learning threshold. A
subject said that “I even did not have to think but just conducted rounds
of trial-and-error of examples to complete tasks.” In contrast to exam-
ples, although most subjects (8/12) thought mappings are accessible,
they also acknowledged the existence of a learning curve. P3 started
with reversed understanding of the row channel and the column channel
in mappings. Specifically, P3 usually subconsciously treated the row
and column channels as table headers along the row and column direc-
tion. For instance, for a mapping (A),()→ (), P3 thought that Rigel
would enumerate and fill the values of A in cells of a row, which is the
result of (),(A)→ (). As such, P3 spent too much time with a large
number of interactions on the attempt of the first task Task 4, resulting
in the outliers of T4 in Fig. 8 (B) and (C). Nevertheless, P3 corrected
the misunderstanding of the declarative mapping after multiple rounds
of attempt and rapidly completed the other three tasks. Finally, P3 also
appreciated the high interpretability of mappings and commented “the
status of the table-to-date can be checked at any time so I can figure
out my fault rapidly.”, which is difficult in examples where subjects
had to inefficiently guess the effects and randomly assemble examples.
About half of subjects (7/12) felt doubtful and unconfident of their
examples in Foofah (µ = 4.08,σ = 3.08 on a 7-point Likert scale of
the frustration level). One subject commented “I felt like the example is
sufficient, but had no idea why the result is wrong.” Another subject
were irritated to multiple rounds of trial-and-error and gave up one task.

Despite the benefits of mappings, most subjects did not like con-
structing mappings by examples and commented the way “stressful”
because they have to determine the partial mapping of examples im-
mediately. They hope that they focus on assembling examples with
optional mapping recommendations, and Rigel finally recommends the
complete mapping and table. Apart from the mapping, several subjects
talked about the shortcomings of the derivation functions. For instance,
P2 and P3 forgot the combine function of string concatenation and
failed in Task 2. P2 pointed out “the functions are not put together”,
which informs us to unify the interactions of the same type of func-
tionalities to keep the consistency and facilitate the accessibility. In
particular, the combine functions should also be placed in the function
list triggered by the “derive” button, and the dragging interaction for
the combine functions can be a shortcut.

In summary, mappings have a slightly larger gulf of execu-
tion [34] than examples while having a considerably narrower gulf
of evaluation [34] as a trade-off. In particular, as said by P3, “Rigel
will be expressive and efficient if users could understand Rigel’s ap-
proach.” By contrast, examples are suited for those who occasionally
need to complete simple or similar data transformation tasks (6/12 sub-
jects). P7 mentioned the by-example approach may facilitate a typical
scenario of “bringing new data into existing data” for novice users,
such as transforming the sales data into the same format as the last
month. To narrow the gulf of execution, tuning Rigel’s user interface to
approach existing tools with additional shortcuts is helpful. Moreover,
Rigel would benefit from a new interaction model that breaks the pre-
mature commitment [16] of examples and mappings and enables users
to focus more on assembling examples.

6.3.2 Example and Mapping: Details v.s Overall
Examples and mappings are usually with different qualitative feeling
of engagement for different users. Although most users commented
examples and mappings were “natural”, there exist counterexamples.
P1 and P4 mentioned that examples did not fit their logic and brought
in extra thinking overhead. P4 said that she usually figured out over-
all shapes and formats of target tables, but “would not consider the
specific value of each cell.” P1 pointed out that he tended to offer
transformation logic to systems and viewed results, and thought the
detailed result assembly with examples “unnatural”. Both P1 and P4
guessed such thinking logic may originate from the programming logic
since they major in Computer Science. By contrast, P2 who majors
in Art and usually designs from local to global liked the by-example
approach and thought that examples provided fine-grained control for
customizing individual needs. To conclude, mappings are suited for
those who like to transform data from the overall logic of tables
while examples support fine-grained control of details.

6.3.3 Mapping: Systematic Exploration
P3, P4, and P5 mentioned that enumerating mappings helped open-
ended exploration. P3 said that he did not fully understand the by-
mapping approach (as described in Sect. 6.3.1) but could also completed
data transformation tasks. P3 pointed out that the mapping provided a
enumerable, systematic template to organize tables, and similar tables
were with similar mappings via short edit distances. Therefore, he
performed efficient trial-and-error exploration of various tables through
independent changes of variables, table channels, and gradually ap-
proached target tables of tasks. During the exploration, P3 said that he
also discovered some useful tables he did not expect.

7 DISCUSSION

Implications. This study proposes to integrate a declarative mapping
approach into a by-example data transformation approach. From the
perspective of techniques, Rigel implements a result-oriented data trans-
formation approach grounded in a novel table definition by declarative
mapping that abstracts traditional process-oriented approaches. Rigel
incorporates the approach into an interactive data transformation sys-
tem for example disambiguation and open-ended exploration. From
the perspective of evaluation, this study analyzes several patterns of
usability for data transformation from the aspects of human cognition
and perception, which could provide insights for designers of data
transformation toolkits and guide the development of these toolkits.
From the perspective of usefulness, Rigel helps data workers improve
their efficiency significantly. The declarative mapping approach can
also be implemented in a textual environment as a general data trans-
formation library. From the perspective of generalizability, the table
definition proposed by Rigel covers various table forms and has the
potential to be extended to a unified characterization of data tables.
First, it depicts the organizations of data in tables and provides a suc-
cinct overview of tabular data. Second, it allows to specify tables and
facilitates the search from search engines or other corpus (e.g., Google
Dataset Search [18]). Third, it can provide entries to analyze real-world
tables (e.g., clustering table specifications), which can promote novel
and creative table designs, efficient exploration of the table space, and
advanced models for intelligent table generation and recommendation.
Lessons learned. We present two design lessons we have learned while
developing Rigel. First, data transformation can also be regarded as a
process of visual information seeking. Therefore, data transformation
tools should also follow the mantra “overview first, then details-on-
demand” [53] to offer usable user interface. During iterations of Rigel,
we developed an alternative design that separates variable derivations
and mapping specifications for conciseness of both steps, instead of
nesting them in a table specification. However, the feedback was disap-
pointing because users preferred to start transformations with mappings
to characterize the overall shape of data tables and then operate data
values on demand. With the alternative design, users had to switch
the two steps mentally, which increased their burdens. Second, ana-
lyzing system design from cognitive dimensions of notations [16] is

useful. Specifically, each round of Rigel’s design was analyzed from
these dimensions and was accordingly refined to improve the usabil-
ity. For instance, targeting high closeness of mapping, we leveraged
user familiar objects (data variables, rows, columns, and cells) to de-
sign Rigel’s mapping, removing abstract concepts (e.g., entity) and
improving accessibility.

Limitations and future work. This work explores to apply an over-
all declarative mapping approach for data transformation from the
underlying model to the interactive system. However, the current im-
plementation of Rigel is admittedly modest, which focuses more on
supporting the breadth-oriented feasibility of a taxonomy of wrangling
operations [40] instead of exhausting all possible operations. We ob-
serve the limitations in both the declarative mapping approach and the
interactive system, and discuss the potential future directions.

Rigel’s declarative mapping approach currently incorporates a few
basic functions with limited parameters and a simple mapping structure
with three common table channels. The gallery has demonstrated its
feasibility to handle most types of data operations. Furthermore, the
approach can be expanded to handle more specific tasks of each type
of the operations. For instance, interpolating missing values based on
the above values (fill in wrangler [38] or ffill in pandas [4]) is capable
of Rigel with additional fine-grained mappings between values and
cells. One possible implementation is to leverage logical functions, e.g.,
(A),()→ (Or(B,”above”)), such that if a value of B is missing then
the above value is mapped to the corresponding cell. Another example
is reshaping cross-tabulations with hierarchical headers such that the
identical values of adjacent header cells are omitted (stack in pandas).
This task can be realized by incorporating a nested row channel into
the existing row channel following Wang’s table anatomy [58]. This
analysis encourages us to develop more features in engineering for an
expressive data transformation approach.

The design of the Rigel system is intentionally limiting the inter-
actions to fixed steps of disambiguating examples and determining
partial mappings while restricting the recommendations to interpretable
enumerations and additions of single variables. Such a design reduces
the complexity. The user study presents Rigel’s benefits of reducing
interactions, understanding transformations, suiting people who prefer
the top-down logic, and helping a systematic exploration. In addition,
Rigel also exposes drawbacks of a slightly steep learning curve, the
constraints of users’ workflow, and the capability of recommending
complex tables. Therefore, we regard advanced interaction and recom-
mendation techniques as important future work. A possible solution is
allowing users to focus more on assembling examples with optional but
not mandatory partial mappings, and finally recommends the complete
mapping and table.

8 CONCLUSION

This paper introduces Rigel, a general data transformation system with
a declarative mapping approach to disambiguate user intents and facili-
tate open-ended exploration. Rigel formulates the data transformation
procedure as direct mappings from data to row, column, and cell chan-
nels of the target table, and enables users to flexibly construct mappings
based on recommendations to compose their target tables. Through a
diverse example gallery and a task-based user study, we demonstrate
that Rigel supports expressive data transformation tasks and enables
efficient data transformation compared to by-example approaches.

Rigel is an open-source system available at https://github.com/
rigel-js/rigel-system, and the declarative mapping approach is
also open-sourced as a JavaScript library at https://github.com/
rigel-js/rigel.js. We plan to collect real-world feedback and
devote more engineering efforts to develop more features for a solid
data transformation library and system in the future.

ACKNOWLEDGMENTS

The work was supported by NSFC (62072400) and the Collaborative
Innovation Center of Artificial Intelligence by MOE and Zhejiang
Provincial Government (ZJU). This work was also partially funded by
the Zhejiang Lab (2021KE0AC02).

https://github.com/rigel-js/rigel-system
https://github.com/rigel-js/rigel-system
https://github.com/rigel-js/rigel.js
https://github.com/rigel-js/rigel.js

REFERENCES

[1] Arquero, a javascript library for query processing and transformation of
data tables. https://github.com/uwdata/arquero. (Retrieved: Jan
15th, 2022).

[2] dplyr, a grammar of data manipulation. https://dplyr.tidyverse.
org. (Retrieved: Jan 15th, 2022).

[3] Open Refine. https://openrefine.org. (Retrieved: Jan 15th, 2022).
[4] pandas, a python data analysis and manipulation tool. https://pandas.
pydata.org. (Retrieved: Jan 15th, 2022).

[5] Tableau Prep. https://www.tableau.com/products/prep. (Re-
trieved: Jan 15th, 2022).

[6] tidyr, tidy messy data. https://tidyr.tidyverse.org. (Retrieved:
Jan 15th, 2022).

[7] Trifacta. https://www.trifacta.com. (Retrieved: Jan 15th, 2022).
[8] Z. Abedjan, J. Morcos, M. N. Gubanov, I. F. Ilyas, M. Stonebraker, P. Pa-

potti, and M. Ouzzani. DataXFormer: Leveraging the Web for semantic
transformations. In Proceedings of the Conference on Innovative Data
Systems Research (CIDR), 2015.

[9] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-
braker. DataXFormer: A robust transformation discovery system. In
Proceedings of the IEEE International Conference on Data Engineering
(ICDE), pages 1134–1145, 2016.

[10] R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. A. Ketabchi, W. A. Litwin,
A. Rafii, and M. Shan. The pegasus heterogeneous multidatabase system.
Computer, 24(12):19–27, 1991.

[11] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. FlashRelate: extracting
relational data from semi-structured spreadsheets using examples. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 218–228, 2015.

[12] L. Bartram, M. Correll, and M. Tory. Untidy data: The unreasonable
effectiveness of tables. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 28(1):686–696, 2022.

[13] R. Bavishi, C. Lemieux, R. Fox, K. Sen, and I. Stoica. AutoPandas: neural-
backed generators for program synthesis. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):168:1–168:27, 2019.

[14] J. Bertin. Semiology of graphics: Diagrams, networks, maps. Technical
report, 1983.

[15] A. Bigelow, C. Nobre, M. Meyer, and A. Lex. Origraph: Interactive
network wrangling. In Proceedings of the IEEE Conference on Visual
Analytics Science and Technology (VAST), pages 81–92, 2019.

[16] A. F. Blackwell, C. Britton, A. L. Cox, T. R. G. Green, C. A. Gurr,
G. F. Kadoda, M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast,
C. Roe, A. Wong, and R. M. Young. Cognitive dimensions of notations:
Design tools for cognitive technology. In Proceedings of the International
Conference on Cognitive Technology: Instruments of Mind, pages 325–
341, 2001.

[17] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (TVCG),
17(12):2301–2309, 2011.

[18] D. Brickley, M. Burgess, and N. Noy. Google Dataset Search: Building a
search engine for datasets in an open Web ecosystem. In Proceedings of
the World Wide Web Conference (WWW), pages 1365–1375, 2019.

[19] T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning.
John Wiley, 2003.

[20] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani. Wrex: A unified
programming-by-example interaction for synthesizing readable code for
data scientists. In Proceedings of the ACM CHI Conference on Human
Factors in Computing Systems (CHI), pages 1–12, 2020.

[21] H. Galhardas, D. Florescu, D. E. Shasha, and E. Simon. AJAX: an extensi-
ble data cleaning tool. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), page 590, 2000.

[22] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), pages 317–330,
2011.

[23] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation
using examples. Communications of the ACM, 55(8):97–105, 2012.

[24] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations
and Trends® in Programming Languages, 4(1-2):1–119, 2017.

[25] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer. Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts.
In Proceedings of the ACM Symposium on User Interface Software and

Technology (UIST), pages 65–74, 2011.
[26] W. R. Harris and S. Gulwani. Spreadsheet table transformations from

examples. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 317–328,
2011.

[27] S. G. Hart. NASA-task load index (NASA-TLX); 20 years later. In Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting,
volume 50, pages 904–908. Sage Publications Sage CA: Los Angeles, CA,
2006.

[28] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. R. Narasayya, and S. Chaudhuri.
Transform-Data-by-Example (TDE): an extensible search engine for data
transformations. Proceedings of the VLDB Endowment, 11(10):1165–
1177, 2018.

[29] Y. He, Z. Jin, and S. Chaudhuri. Auto-Transform: Learning-to-transform
by patterns. Proceedings of the VLDB Endowment, 13(11):2368–2381,
2020.

[30] M. Hearst. Search user interfaces. Cambridge University Press, 2009.
[31] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive interaction for data

transformation. In Proceedings of the Conference on Innovative Data
Systems Research (CIDR), 2015.

[32] J. Heer and A. Perer. Orion: A system for modeling, transformation and
visualization of multidimensional heterogeneous networks. Information
Visualization, 13(2):111–133, 2014.

[33] E. Horvitz. Principles of mixed-initiative user interfaces. In Proceedings
of the ACM CHI Conference on Human Factors in Computing Systems
(CHI), pages 159–166, 1999.

[34] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation
interfaces. Human-Computer Interaction, 1(4):311–338, 1985.

[35] Z. Jin, M. R. Anderson, M. J. Cafarella, and H. V. Jagadish. Foofah: A
programming-by-example system for synthesizing data transformation
programs. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 1607–1610, 2017.

[36] Z. Jin, M. R. Anderson, M. J. Cafarella, and H. V. Jagadish. Foofah:
Transforming data by example. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 683–
698, 2017.

[37] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, and P. Buono. Research directions in
data wrangling: Visualizations and transformations for usable and credible
data. Information Visualization, 10(4):271–288, 2011.

[38] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In Proceedings of the
ACM CHI Conference on Human Factors in Computing Systems (CHI),
pages 3363–3372, 2011.

[39] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data
analysis and visualization: An interview study. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 18(12):2917–2926, 2012.

[40] S. Kasica, C. Berret, and T. Munzner. Table Scraps: An actionable frame-
work for multi-table data wrangling from an artifact study of computational
journalism. IEEE Transactions on Visualization and Computer Graphics
(TVCG), 27(2):957–966, 2021.

[41] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL: An
extension to SQL for multidatabase interoperability. ACM Transactions
on Database Systems, 26(4):476–519, 2001.

[42] T. Lau. Why programming-by-demonstration systems fail: Lessons
learned for usable AI. AI Magazine, 30(4):65–67, 2009.

[43] T. Y. Lee, C. Dugan, and B. B. Bederson. Towards understanding human
mistakes of programming by example: An online user study. In Proceed-
ings of the International Conference on Intelligent User Interfaces (IUI),
pages 257–261, 2017.

[44] G. Li, R. Li, Z. Wang, H. C. Liu, M. Lu, and G. Wang. Hitailor: Interac-
tive transformation and visualization for hierarchical tabular data. IEEE
Transactions on Visualization and Computer Graphics, To Appear.

[45] H. Lieberman. Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

[46] J. Liu, N. Boukhelifa, and J. R. Eagan. Understanding the role of alterna-
tives in data analysis practices. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 26(1):66–76, 2020.

[47] Z. Liu, S. B. Navathe, and J. T. Stasko. Network-based visual analysis of
tabular data. In Proceedings of the IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 41–50, 2011.

[48] J. D. Mackinlay. Automating the design of graphical presentations of
relational information. ACM Transactions on Graphics (TOG), 5(2):110–

https://github.com/uwdata/arquero
https://dplyr.tidyverse.org
https://dplyr.tidyverse.org
https://openrefine.org
https://pandas.pydata.org
https://pandas.pydata.org
https://www.tableau.com/products/prep
https://tidyr.tidyverse.org
https://www.trifacta.com

141, 1986.
[49] M. Muller, I. Lange, D. Wang, D. Piorkowski, J. Tsay, Q. V. Liao,

C. Dugan, and T. Erickson. How data science workers work with data:
Discovery, capture, curation, design, creation. In Proceedings of the ACM
CHI Conference on Human Factors in Computing Systems (CHI), page
126, 2019.

[50] V. Raman and J. M. Hellerstein. Potter’s Wheel: An interactive data
cleaning system. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 381–390, 2001.

[51] D. Ren, B. Lee, M. Brehmer, and N. H. Riche. Reflecting on the evaluation
of visualization authoring systems: Position paper. In IEEE Evaluation
and Beyond - Methodological Approaches for Visualization, pages 86–92,
2018.

[52] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 23(1):341–350, 2017.

[53] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the IEEE Symposium on
Visual Languages, pages 336–343. IEEE Computer Society, 1996.

[54] R. Singh and S. Gulwani. Learning semantic string transformations from
examples. Proceedings of the VLDB Endowment, 5(8):740–751, 2012.

[55] R. Singh and S. Gulwani. Synthesizing number transformations from
input-output examples. In Proceedings of the International Conference on
Computer-Aided Verification (CAV), volume 7358, pages 634–651, 2012.

[56] R. Singh and S. Gulwani. Transforming spreadsheet data types using
examples. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 343–356, 2016.

[57] C. Wang, Y. Feng, R. Bodı́k, I. Dillig, A. Cheung, and A. J. Ko. Falx:
Synthesis-powered visualization authoring. In Proceedings of the ACM
CHI Conference on Human Factors in Computing Systems (CHI), pages
106:1–106:15, 2021.

[58] X. Wang. Tabular Abstraction, Editing, and Formatting. PhD thesis,
University of Waterloo, Ontario, Canada, 1996.

[59] R. W. White and R. A. Roth. Exploratory Search: Beyond the Query-
Response Paradigm. Synthesis Lectures on Information Concepts, Re-
trieval, and Services. Morgan & Claypool Publishers, 2009.

[60] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 22(1):649–658, 2016.

[61] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. D. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the ACM
CHI Conference on Human Factors in Computing Systems (CHI), pages
2648–2659, 2017.

[62] K. Xiong, S. Fu, G. Ding, Z. Luo, R. Yu, W. Chen, H. Bao, and Y. Wu. Vi-
sualizing the scripts of data wrangling with SOMNUS. IEEE Transactions
on Visualization and Computer Graphics, To Appear.

[63] K. Xiong, Z. Luo, S. Fu, Y. Wang, M. Xu, and Y. Wu. Revealing the se-
mantics of data wrangling scripts with COMANTICS. IEEE Transactions
on Visualization and Computer Graphics, To Appear.

[64] C. Yan and Y. He. Auto-Type: Synthesizing type-detection logic for rich
semantic data types using open-source code. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD),
pages 35–50, 2018.

[65] C. Yan and Y. He. Auto-Suggest: Learning-to-recommend data preparation
steps using data science notebooks. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 1539–
1554, 2020.

[66] J. Yang, Y. He, and S. Chaudhuri. Auto-Pipeline: Synthesize data pipelines
by-target using reinforcement learning and search. Proceedings of the
VLDB Endowment, 14(11):2563–2575, 2021.

[67] R. Zanibbi, D. Blostein, and J. R. Cordy. A survey of table recognition.
International Journal on Document Analysis and Recognition, 7(1):1–16,
2004.

[68] T. Zhang, Z. Chen, Y. Zhu, P. Vaithilingam, X. Wang, and E. L. Glassman.
Interpretable program synthesis. In Proceedings of the ACM CHI Confer-
ence on Human Factors in Computing Systems (CHI), pages 105:1–105:16,
2021.

	Introduction
	Related Work
	Foundations of Data Transformation
	Transformation Systems for Tabular Data

	Declarative Mapping for Transformation
	Building Data Variables and Relations
	Transforming Data with Declarative Mappings

	Rigel
	Design Considerations
	The Rigel System
	Construct Table Mappings
	Exploring Table Variants

	Usage Scenario
	User Study
	Method
	Quantitative Results
	Qualitative Feedback
	Example and Mapping: Execution v.s Evaluation
	Example and Mapping: Details v.s Overall
	Mapping: Systematic Exploration

	Discussion
	Conclusion

